oY FIXSTARS

Speed up your Business

GridDB and Cassandra Performance and Scalability.
A YCSB Performance Comparison on Microsoft Azure.

October 31, 2016

Revision 1.4.0

Table of Contents

EXECULIVE SUIMIMATY ..euciuiicciririsiresesessesssssesssesess s ssssesssssessssessssssessssssessssssssssssssssssessssssesssssssssssssssssnssssssesssssssnssns 3
0L 076 L1 (ot T) o L 3
00N 2T 0] 030 =) 4L 4
AZUTE CONTIGUIALION w.veretrrerreseesseeseessessessseessesssssesse s ss s s ss s s s R RS E R RS 4
SOFEWATE VEISIOIS w.ouvreuseeusesseersersressseessecsseessesssesssesssesssesssesssesssessssssssesssess e s sssesssess s sssesssess s ssesssesssessssesasssmsesssessssesssees 4
SOfEWATE CONFIGUIATION ...cuvieueeeeeeereireseeseeseesse e esse e b ess et s bbb R bR b s bR Rt 4

[0 0 T U 1) 5 PP PPN 4

L00 ETSF: U 1e | TN 4
L1531 1S) - 1 N 5
BT oY =1 0 Lo e (0] (0 .y PP 6
BT DT ¥4 o P 6

1LY] a Lo (o) o .70 OO TOP T PTPOSTON 6
Collection and AGBIEGAtIONwueueereeesreeseeseesseeseesssesssesssessseesssesssesssessseesssesssesssesssessssesssesssesssessssesssesssessssesasssmsesssesssessseees 7
Benchmark ReSULLS ... 8
70 T N 8
R0 Lo = e PPN 10
R0 Lo = e = PPN 12
WOTKIOAA C..ooeoreeeeeeeeseesseesseesseessesssessseessessseesseessssssees e ssseessees e sss s s8R R R e E R n R s 14
R0 (o T- e N 16
R0 4 Lo - e LN 18
000 0T =S BT 0 g <4 (o= U U PP 21
TADUIAT RESUILS ..ooveueeeeieee et seeeseeseesees e sees s esss s ss s s ss s s e RS R R 22
Throughput with Small Data Set (4M Records Per NOAE)curereeneemeenseneieesseesessessseeeessessessessesssenes 22
Latency with Small Data Set (4M Records Per node) -- 1 NOdeoccovnerienreeneeseeneeseenecseensessessesseesseeseeans 23
Latency with Small Data Set (4M Records Per node) -- 8 NOAEScounerienrerneererneeseenecsseenseeseesesseesseeseenns 23
Latency with Small Data Set (4M Records Per node) -- 16 NOAES.....c.ccneenernmerreerreersmerseesseesseesssessessenssees 24
Latency with Small Data Set (4M Records Per node) -- 32 NOAES.....coccrereenermeernnersmerseesseesseesssessessenssees 24
Throughput with Large Data Set (12M Records Per NOAE)cooeeeneneenneeneeneeeeeseesesseeseessessessessesseenes 25
Latency with Large Data Set (12M Records Per Node) -- 1 NOde......conerieneeeneemerneeseenecsseensessessesseesseeseeans 26
Latency with Large Data Set (12M Records Per Node) -- 8 NOdeS......courieneeneererneeseenecsneensesseesesseesseeseenns 26
Latency with Large Data Set (12M Records Per Node) -- 16 NOAES....ccoccreenreereerreernmermeesseesseesseessesseessens 27
Latency with Large Data Set (12M Records Per Node) -- 32 NOAEScoccreenerreerreernmermeesseesseesssessessseesees 27

000} 4 T L1 13 T) o 1P 28
APPEINAICES ..ot Rt 29
CONfIGUIAtION FIlES iR bbb 29
S _TIOM . SOTN uueureureueereeuseteeseeseessessse s s s eesse e eas et s Ea £ AR RS £ AR ER SRR R R AR R R R 29

S _ClUS I JSOMN cuveeeeeeeeeeiees ettt e s eas e s s R SRR AR b b 30

Lot E1ST= o T D 1y 2 0 1 PPN 30

LOF TSP 10 Lo Dor= Bl 1<) oo - U PP 32

Page 2

Executive Summary

With the introduction of Toshiba’s GridDB NoSQL database, Fixstars performed benchmarks
using YCSB on Microsoft Azure to compare GridDB with one of the leading NoSQL databases:
Apache Cassandra. These benchmarks were performed on 1 through 32 node clusters with
different total database sizes. These varied conditions hoped to show how the different
databases compared across different workload parameters.

The overall conclusions of the performance benchmarks are that GridDB outperformed
Cassandra in both throughput and latency, and that GridDB is truly scalable and capable of
consistent performance in long-run operations.

Introduction

NoSQL databases were designed to overcome some of the limitations of relational databases
and to offer greater scalability, reliability, and flexibility over their predecessors. With
emerging technologies such as cloud and mobile computing, the Internet of Things, and ever
increasing amounts of data being collected and processed, NoSQL databases are the first
choice for today’s and tomorrow’s applications.

GridDB is a distributed NoSQL database developed by Toshiba that can be operated as an in-
memory database or with a hybrid composition. It is fully ACID-compliant (Atomicity,
Consistency, Isolation, Durability) at the container level and has a rich set of features. It can
also be used as either a Key-Container or TimeSeries database.

Cassandra is a free and open source distributed NoSQL database. Cassandra is considered to
have some of the best performance of the major NoSQL databases while maintaining high
availability and a decentralized design.

The Yahoo! Cloud Serving Benchmark, or YCSB, is a modular benchmark for NoSQL or Key-
store databases that is written in Java.

Page 3

Environment

Azure Configuration

Three resource groups were created, each with 65 Standard D2 instances in the West-US
region. The Standard D2 instances feature two Intel Xeon CPU E5-2673 cores running at
2.40GHz, 7GB of memory, 1Gpbs networking, and a 100GB local SSD. The local SSD was used
to store the GridDB and Cassandra’s data files while a persistent page blob stored the OS
disk.

Each instance was based on the OpenLogic Centos 6.5 Linux image. The first instance
contained a public IP address and acted as a headnode while up to 32 instances would be used
as NoSQL database servers and an equal number of instances ran YCSB clients.

The headnode was responsible for starting the servers, executing the YCSB clients, collecting
resource utilization statistics, and aggregating the results.

Software Versions
GridDB version 3.0 CE was installed into the Azure nodes using RPM packages provided by
Toshiba Corporation.

For Cassandra, version 3.4 was installed from Datastax’s community YUM repository.

YCSB was cloned from its github repository on July 5, 2016. The Cassandra2 Database driver
remained unmodified. Toshiba provided their YCSB GridDB driver in August 2016 and it was
modified to use the Fixed List connection method instead of Multicast.

Software Configuration

GridDB

For the most part, GridDB used the default or recommended configuration. Experimentation
confirmed that these were the ideal values for the setup. Concurrency was set to 2 to match
the number of cores, while checkMemoryLimit was set to 512MB and storeMemoryLimit was
set to 6144MB. This configuration allowed plenty of space to keep 4GB of records in memory
and allowed approximately 512MB for other system actions.

GridDB used the fixed list method of communicating with other GridDB servers instead of the
more typical multicast method because Azure and most other Cloud providers do not support
multicast between instances.

The only other change from the default values was setting storeBlockSize to 32KB from 64KB.

Cassandra

As many other benchmarks with Cassandra reported, write timeouts were a problem with
Cassandra. To address this, core_workload_insertion_retry_limit was increased to 10 from 0 in
the YCSB workload file and read_request_timout_in_ms was increased to 5 seconds while
write_request_timeout_in_ms, counter_write_request_timeout_in_ms, and
range_request_timeout_in_ms were all increased to 10 seconds.

Page 4

To reduce cluster start up times, n-1 seeds were used where n is the number of nodes. 1 and 4

seeds were also experimented with but were deemed to have no impact on performance in a
single rack/datacenter environment.

Concurrent readers, writers, and were all set to 32 as confirmed by experimentation.

General

For all systems, the maximum number of open files was increased to 64000 via limits.conf.

Page 5

Test Methodology

Test Design
The goal of the testing was to see how each database performed under a variety of conditions
while maintaining similar parameters as other high profile NoSQL benchmarks.

In earlier, smaller scale testing, it was discovered that thread counts between 32 and 192 all
produced similar results, but 128 threads was the most consistent. A thread count of 128 was
therefore used for all subsequent testing except for Cassandra loads which use 32 threads to
prevent Timeout exceptions. Further research has shown that this is fairly common behavior
with Cassandra and while the configuration can be modified, best performance is achieved
with fewer threads.

It was determined that two data sets would be used, a small data set of 4M records per node,
and a larger dataset that would store 12M records per node. Each record would consist of ten
100 byte strings (1Kbyte per record), therefore the per node database size would be 4GB or
12GB respectively. The small data set could fit entirely within memory, while 50% of the large
data set would need to be flushed from local memory stores or caches. The transactional
workloads would each perform 10M operations per client and would have access to the entire
data set. This configuration would give Cassandra sufficient time for JVM warm up and
ensure that rows would be both in and out of cache.

Methodology

Due to the inherent inconsistency of running a workload on shared cloud services, each series
of tests were run three times in a different resource group and the results shown here are from
the individual best throughput for each workload. This decision was made to minimize
performance fluctuations caused by Azure as the benchmark’s goal was to evaluate GridDB
and Cassandra, not Azure.

Starting from a state where all instances are “deallocated”, the headnode would first start the
required number of instances. Once they are running, deploy configuration files, mount the
local SSD, remove any existing database data files, and finally start GridDB or Cassandra via
their initscript.

Once the servers have finished starting, server statistics via gs_stat for GridDB or nodetool for
Cassandra would be captured and stored for further analysis.

YCSB load would be executed concurrently on all the client nodes with the appropriate
insertstart, insertcount, recordcount parameters. After the load completes, workloads are run
in the following order according to the YCSB recommendation (see
https://github.com/brianfrankcooper/Y CSB/wiki/Core-Workloads):

e Workload A -- Update heavy

e Workload B -- Mostly reads

e Workload C -- Read only

e Workload F -- Read, modify, write
o Workload D -- Read latest

Server statistics are once again captured after each workload finishes.

Page 6

https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads

Collection and Aggregation

All YCSB output is captured for post processing and result compilation. Simple bash scripts
using awk and grep were used to output a single test run per line in CSV format and were
then further processed in a spreadsheet.

Page 7

Benchmark Results

Load

Other Cassandra benchmark reports have reported difficulties in loading data into Cassandra
— Fixstars encountered similar issues. Increasing concurrent writers from the recommended
settings, extending timeouts by a factor of 10, and reducing the number of threads to 32
corrected all TimeoutExceptions. For throughput, higher is better and for latency, lower is
better.

Load@Throughputi4MEecords/node)

400,000

et

350,000 /
300,000 /

g 250,0008
<
Z /
o
g 200,000
_g; e=p==GridDB
=]
_g allsnC3ssandra
£ 150,000
100,000 /
50,0008
—]
/ D = =
o -+ Ml : : :
oz 10m 208 308
Number®fNodes
LoadThroughput{12M@ecords/node)
300,0008
250,000 /
200,0008
T
3
S~
8
o
g 150,0002
_hé'; @=g==GridDB
>
.g @fllssCassandra
£
100,0002
50,0000
- — 1
/
—
oa | — r ; :
oz 100 208 308

Number®fiNodes

Page 8

Load Latency (ms)
=) N}
vl o vl

=
(=]

vl

45

40

N w
vl o

Load Latency (ms)
[y
o

[EnN
vl

vl

Load Latency (4M Records/ Node)

1 Node 8 Node 16 Node 32 Node
Lower is Better
m GridDB M Cassandra

Load Latency (12M Records/ Node)

1 Node 8 Node 16 Node 32 Node
Lower is Better

W GridDB M Cassandra

Page 9

Workload A
Workload A is an update intensive workload. For throughput, higher is better and for latency,
lower is better.

WorkloadBAmhroughput (4Miecords/node)

el

300,000

250,000

200,000

150,000
@ GridDB

@@= Cassandra

Throughput?(ops/sec)

100,000

50,0008

I\
'
!
x

0@ - T T T
V] 10m@ 203 30

Number®fiNodes

Workload@@Throughput (12M@ecords/node)

80,0003

/

70,0002 /
60,0002 /
50,000 /
40,000
edmGridDB
@ Cassandra
30,0008 /

20,000

Throughput?(ops/sec)

10,0008

o T T T
oa 103 208 308

Number®fiNodes

Page 10

250

200

=
ul
o

Latency (ms)
=
(]
o

50

300

250

200

150

Latency (ms)

100

50

Workload A Latency (4M Records/Node)

m]
Read Update Read Update Read Update
1 Node 8 Nodes 16 Nodes
Lower is Better
m GridDB m Cassandra

Workload A Latency (12M Records/ Node)

Read Update Read Update Read Update

1 Node 8 Nodes 16 Nodes

Lower is Better

H GridDB m Cassandra

| m
Read Update
32 Nodes

Read Update
32 Nodes

Page 11

Workload B

Workload B contains 95% read operations and 5% write operations. For throughput, higher is
better and for latency, lower is better.

Workload® Throughput (4Miecords/node)

600,000

500,0008

400,000

300,000
@=g=GridDB

@ll=nC3ssandra

Throughput®(ops/sec)

200,000

100,0008 /
e a

0@ _Z : i .
(0 10 200 308
Number®fNodes

Workload® Throughput (12M&ecords/node)

200,0008

180,000

160,000 //
140,000@ /
120,000 /

100,000@

@=g==GridDB

80,000 allsn(assandra

60,000
40,0003
20,000m A/
T -
0& - T T T
(0] 10

20 30

Throughput®(ops/sec)

Number@®fNodes

Page 12

180

160

140

120

100

80

Latency (ms)

60

40

20

250

200

[N
ul
o

Latency (ms)

[uny
(=}
(==}

5

o

Workload B Latency (4M Records/ Node)

Read Update Read Update Read Update Read Update

1 Node 8 Nodes 16 Nodes 32 Nodes
Lower is Better
H GridDB B Cassandra

Workload B Latency (12M Records/Node)

Read Update Read Update Read Update Read Update

1 Node 8 Nodes 16 Nodes 32 Nodes
Lower is Better

m GridDB m Cassandra

Page 13

Workload C
Workload C is only read operations. For throughput, higher is better and for latency, lower is
better.

WorkloadX Throughput (4M&ecords/node)
700,0002
600,0002 /
500,0002
g /
% 400,0008
O
g
2 @deGridDB
% 300,0008
[@@= (assandra
=
200,0002 /
100,000 /
=
0 | ——— =i : ,
oe 100 200 300
Number®fNodes
Workload®X Throughput (12M&ecords/node)
250,000
200,0008 /
]
£ 150,000
g
g @G ridDB
[}
_é 100,000 @li=»(Cassandra
£
50,0008
el
— L —
om -
o 100 200 300
Number®fNodes

Page 14

140

120

100

80

60

Latency (ms)

40

20

250

200

[uny
ul
(==}

Latency (ms)

=
o
o

50

Workload C Latency (4M Records/Node)

1 Node

Workload C Latency (12M Records/Node)

8 Node

16 Node

Lower is Better

m GridDB

® Cassandra

32 Node

1 Node

8 Node

16 Node

Lower is Better

H GridDB

M Cassandra

32 Node

Page 15

Workload D

Workload D inserts new records and then reads those new records. For throughput, higher is
better and for latency, lower is better.

Throughput®(ops/sec)

900,0008

800,000

700,000

600,0008

500,0008

400,000

300,000

200,000@

100,000

oz

Workload® Throughput (4Miecords/node)

e

/

/

@=p==GridDB

@llsn(assandra

/

é ——— -

o

10@ 20 30
Number®fiNodes

Throughput(ops/sec)

350,0008

300,0008

250,0008

200,0008

150,000

100,000@

50,0000 -

0@ -

Workload® Throughput (12MEXecords/node)

et

~

~

@=g==GridDB

@llsnC3ssandra

o

10@ 200 30@
Number@®fNodes

Page 16

Latency (ms)

Latency (ms)

90

80

70

60

50

40

30

20

10

120

100

80

60

40

20

Workload D Latency (4M Records/Node)

Insert Read Insert Read Insert Read Insert Read

1 Node 8 Nodes 16 Nodes 32 Nodes
Lower is Better
W GridDB ™ Cassandra

Workload D Latency (12M Records/Node)

Insert Read Insert Read Insert Read Insert Read

1 Node 8 Nodes 16 Nodes 32 Nodes
Lower is Better

H GridDB M Cassandra

Page 17

Workload F

Workload F reads a record, modifies it, and then writes it back. For throughput, higher is
better and for latency, lower is better.

Workload® Throughput (4M@ecords/node)

300,000

250,0008

200,0008

150,000

100,0008 /
50,0002 /
- .

| [— -
OR - T T T
oal 10@ 20 30
Number®fiNodes

&= GridDB
@llsn(assandra

Throughput®opt/sec)

Workload® Throughput (12M@ecords/node)

90,0003

80,0008 /

70,0001 /
60,0002 /
50,000m
/ ==GridDB
40,000
/ @llsnC3ssandra
30,0008

20,0002

Throughput(ops/sec)

10,0008 — i ——_

0l T
[10m 20 30

Number®fNodes

Page 18

300

250

200

150

Latency (ms)

100

50

350

300

250

N
o
o

Latency (ms)
-
vl
o

100

50

Workload F Latency (4M Records/Node)

1 Node 8 Nodes 16 Nodes 32 Nodes
Lower is Better

B GridDB Read B GridDB Read-Modify-Write GridDB Update

m Cassandra Read H Cassandra Read-Modify-Write =~ Cassandra Update

Workload F Latency (12M Records/Node)

1 Node 8 Nodes 16 Nodes 32 Nodes
Lower is Better
B GridDB Read B GridDB Read-Modify-Write
GridDB Update B Cassandra Read
® Cassandra Read-Modify-Write Cassandra Update

Page 19

Page 20

Long Term Workload A

In update-intensive workloads such as Workload A, Cassandra’s initial results are quite

favorable as its log based architecture allows it to quickly mark a row as deleted and then
append the new value to the end of the log. Fixstars noticed that over time Cassandra began
to slow down. Fixstars configured an 8-node cluster and loaded 4M and 12M records per node
and set operationcount to 2732-1 and let the test run for twenty-four hours.

Although it is easier to see the trend with the larger data set, with both tests, Cassandra’s
throughput is less than 50% of what it was in the twenty forth hour versus the first.

Meanwhile GridDB’s performance was stable when doing both in and out of memory

operations.
Long@erm@NVorkloadBAThroughput{4Miecords/node)
100000
75000
m
&
> ==GridDBE
Q.
= e=(Cassandra
5 50000
Q.
=
b0
=]
g
=
[
25000
— — M
O T T T 1
6 12 18 24
Timefhour)
Long@erm@VorkloadBAmhroughputil2Miecords/node)
20000
M - ~— — —
15000
7
3)
> ==GridDBM
S d
e==(Cassandra
% 10000
Q.
-
oo
3
e
K-
'—
5000 ~—
0 T T T 1
6 12 18 24
Timedhour)

Page 21

Tabular Results

All throughput values are “operations per second” and all latency values are “microseconds”.

Throughput with Small Data Set (4M Records Per Node)

1 Node 8 Nodes 16 Nodes 32 Nodes

Load GridDB 20,425 123,859 184,836 369,046
Cassandra 4,246 15,223 19,753 30,304

Workload A GridDB 21,286 117,284 157,347 270,690
Cassandra 4,330 17,656 21,781 36,496

Workload B GridDB 31,449 179,842 296,967 529,091
Cassandra 3,171 11,657 15,865 25,832

Workload C GridDB 33,796 227,802 318,485 624,954
Cassandra 2,707 11,174 15,886 24,623

Workload D GridDB 31,010 261,624 395,112 801,982
Cassandra 5,672 23,654 34,246 51,389

Workload F GridDB 17,300 90,310 157,144 262,940
Cassandra 1,837 8,351 10,971 17,942

Page 22

Latency with Small Data Set (4M Records Per node) -- 1 Node

Insert Read Read-Mod-Write Update
Load GridDB 6.0
Cassandra 7.0
Workload A GridDB 3.9 7.7
Cassandra 30.9 28.1
Workload B GridDB 3.8 7.6
Cassandra 40.2 40.0
Workload C GridDB 3.6
Cassandra 47.2
Workload D GridDB 5.1 3.9
Cassandra 241 22.4
Workload F GridDB 3.7 10.7 6.9
Cassandra 47.5 91.6 44.1
Latency with Small Data Set (4M Records Per node) -- 8 Nodes
Insert Read Read-Mod-Write Update
Load GridDB 8.0
Cassandra 13.3
Workload A GridDB 6.2 11.0
Cassandra 98.6 16.3
Workload B GridDB 5.3 10.3
Cassandra 91.3 10.6
Workload C GridDB 4.4
Cassandra 91.0
Workload D GridDB 4.5 3.8
Cassandra 14.2 44.5
Workload F GridDB 6.7 15.7 9.0
Cassandra 47.5 91.6 44.1

Page 23

Latency with Small Data Set (4M Records Per node) -- 16 Nodes

Insert Read Read-Mod-Write Update
Load GridDB 10.7
Cassandra 25.7
Workload A GridDB 10.2 16.5
Cassandra 154.7 30.9
Workload B GridDB 6.4 12.3
Cassandra 134.0 19.3
Workload C GridDB 6.3
Cassandra 128.0
Workload D GridDB 5.7 5.0
Cassandra 57.9 59.3
Workload F GridDB 7.5 18.2 10.6
Cassandra 176.0 194.5 18.6
Latency with Small Data Set (4M Records Per node) -- 32 Nodes
Insert Read Read-Mod-Write Update
Load GridDB 13.4
Cassandra 33.6
Workload A GridDB 11.3 18.0
Cassandra 168.7 52.2
Workload B GridDB 6.8 13.2
Cassandra 163.8 23.7
Workload C GridDB 6.2
Cassandra 164.7
Workload D GridDB 5.5 4.9
Cassandra 77.2 79.1
Workload F GridDB 8.7 213 12.6

Page 24

Cassandra 213.8 237.8 24.0

Throughput with Large Data Set (12M Records Per Node)
1 Node 8 Nodes 16 Nodes 32 Nodes
Load GridDB 13,082 80,074 141,847 277,243
Cassandra 4,325 12,405 18,063 25,412
Workload A GridDB 1,945 14,847 33,078 74,053
Cassandra 1,699 12,485 18,892 30,973
Workload B GridDB 4,233 35,419 78,117 173,166
Cassandra 951 7,674 12,431 22,684
Workload C GridDB 5,149 50,211 111,996 220,950
Cassandra 884 7,353 12,082 21,129
Workload D GridDB 17,575 77,486 155,445 316,608
Cassandra 2,881 15,003 24,349 44,677
Workload F GridDB 2,242 16,209 36,188 83,399
Cassandra 788 6,236 8,960 16,212

Page 25

Latency with Large Data Set (12M Records Per Node) -- 1 Node

Insert Read Read-Mod-Write Update
Load GridDB 9.7
Cassandra 7.0
Workload A GridDB 44.2 87.0
Cassandra 130.8 19.5
Workload B GridDB 28.7 56.9
Cassandra 140.2 23.8
Workload C GridDB 24.8
Cassandra 144.6
Workload D GridDB 7.3 7.2
Cassandra 27.0 453
Workload F GridDB 29.1 84.7 55.6
Cassandra 149.1 175.2 26.1
Latency with Large Data Set (12M Records Per Node) -- 8 Nodes
Insert Read Read-Mod-Write Update
Load GridDB 12.9
Cassandra 15.9
Workload A GridDB 56.4 80.6
Cassandra 148.4 13.1
Workload B GridDB 27.7 48.4
Cassandra 139.0 13.2
Workload C GridDB 20.2
Cassandra 138.6
Workload D GridDB 14.2 13.0
Cassandra 12.1 70.8
Workload F GridDB 46.1 79.3 33.2
Cassandra 47.5 91.6 44.1

Page 26

Latency with Large Data Set (12M Records Per Node) -- 16 Nodes

Insert Read Read-Mod-Write Update
Load GridDB 14.2
Cassandra 28.2
Workload A GridDB 50.4 723
Cassandra 194.0 20.2
Workload B GridDB 25.1 434
Cassandra 171.5 18.4
Workload C GridDB 18.1
Cassandra 168.6
Workload D GridDB 13.9 13.0
Cassandra 14.6 87.1
Workload F GridDB 41.0 71.1 30.1
Cassandra 217.7 236.6 18.9
Latency with Large Data Set (12M Records Per Node) -- 32 Nodes
Insert Read Read-Mod-Write Update
Load GridDB 14.5
Cassandra 40.1
Workload A GridDB 44.6 65.1
Cassandra 224.8 35.7
Workload B GridDB 224 40.6
Cassandra 187.4 22.3
Workload C GridDB 18.2
Cassandra 192.4
Workload D GridDB 13.4 12.3
Cassandra 14.9 94.8
Workload F GridDB 34.7 62.3 27.6
Cassandra 238.3 262.6 24.3

Page 27

Conclusion

GridDB’s hybrid storage architecture, in-memory-oriented architecture, outperforms
Cassandra both in-memory and in operations required using out-of-memory storage. GridDB
accomplishes this while maintaining the same reliability and consistency through twenty-four

hours of operation.

The internode communication of GridDB scales significantly better than Cassandra’s
decentralized peer-to-peer system, at least up through 32 nodes. GridDB’s performance
increases by nearly the same factor as the number of nodes added; Cassandra is only able to
scale at 50% of that same factor with this particular Azure instance type.

Page 28

Appendices

Configuration Files

gs_node.json

{

"dataStore":{
"dbPath":"data",
"storeMemoryLimit":"6144MB",
"storeWarmStart":true,
"concurrency":2,
"logWriteMode":1,
"persistencyMode" : "NORMAL",
"affinityGroupSize":4

¥

"checkpoint":{
"checkpointInterval":"1200s",
"checkpointMemoryLimit":"512MB",
"useParallelMode":false

cluster":{
"servicePort":10010

"sync":{
"servicePort":10020

}s

"system":{
"servicePort":10040,
"eventLogPath":"log"

}s

"transaction":{
"servicePort":10001,
"connectionlLimit" :10000

}s

"trace":{
"default":"LEVEL_ERROR",
"dataStore" :"LEVEL_ERROR",
"collection":"LEVEL_ERROR",
"timeSeries":"LEVEL_ERROR",
"chunkManager":"LEVEL_ERROR",
"objectManager":"LEVEL_ERROR",
"checkpointFile" :"LEVEL_ERROR",
"checkpointService":"LEVEL_INFO",
"logManager":"LEVEL_WARNING",
"clusterService":"LEVEL_ERROR",
"syncService":"LEVEL_ERROR",
"systemService":"LEVEL_INFO",
"transactionManager":"LEVEL_ERROR",
"transactionService":"LEVEL_ERROR",
"transactionTimeout":"LEVEL_WARNING",
"triggerService":"LEVEL_ERROR",
"sessionTimeout":"LEVEL WARNING",
"replicationTimeout":"LEVEL_WARNING",
"recoveryManager" :"LEVEL_INFO",
"eventEngine" :"LEVEL_WARNING",
"clusterOperation":"LEVEL_INFO",
"ioMonitor":"LEVEL_WARNING"

Page 29

}
gs_cluster.json
{
"dataStore":{
"partitionNum":128,
"storeBlockSize" :"32KB"
}s
"cluster":{
"clusterName":"defaultCluster",
"replicationNum":1,
"heartbeatInterval”:"5s",
"loadbalanceCheckInterval":"180s",
"notificationMember": [
{
"cluster"”: {"address":"10.0.0.13", "port":10010},
"sync": {"address":"10.0.0.13", "port":10020},
"system": {"address":"10.0.0.13", "port":10040},
"transaction": {"address":"10.0.0.13", "port":10001},
}
]
¥
"sync":{
"timeoutInterval”:"30s"
}
}

cassandra.yaml

cluster_name: 'Test Cluster'
num_tokens: 256
hinted_handoff_enabled: true
hinted_handoff_throttle_in_kb: 1024
max_hints_delivery_threads: 2
hints_directory: /var/lib/cassandra/hints
hints_flush_period_in_ms: 10000
max_hints_file_size_in_mb: 128
batchlog_replay_throttle_in_kb: 1024
authenticator: AllowAllAuthenticator
authorizer: AllowAllAuthorizer
role_manager: CassandraRoleManager
roles_validity_in_ms: 2000
permissions_validity_in_ms: 2000
credentials_validity_in_ms: 2000
partitioner: org.apache.cassandra.dht.Murmur3Partitioner
data_file_directories:

- /var/lib/cassandra/data
commitlog_directory: /var/lib/cassandra/commitlog
disk_failure_policy: stop
commit_failure_policy: stop
key_cache_size_in_mb:
key_cache_save_period: 14400
row_cache_size_in_mb: 0
row_cache_save_period: 0
counter_cache_size_in_mb:

Page 30

counter_cache_save_period: 7200
saved_caches_directory: /var/lib/cassandra/saved_caches
commitlog_sync: periodic
commitlog_sync_period_in_ms: 10000
commitlog_segment_size_in_mb: 32
seed_provider:
- class_name: org.apache.cassandra.locator.SimpleSeedProvider
parameters:

- seeds: ${SEEDS}
concurrent_reads: 32
concurrent_writes: 32
concurrent_counter_writes: 32
concurrent_materialized_view_writes: 32
memtable_allocation_type: heap_buffers
index_summary_capacity_in_mb:
index_summary_resize_interval_in_minutes: 60
trickle_fsync: false
trickle_fsync_interval_in_kb: 10240
storage_port: 7000
ssl_storage_port: 7001
start_native_transport: true
native_transport_port: 9042
start_rpc: false
rpc_port: 9160
rpc_keepalive: true
rpc_server_type: sync
thrift_framed_transport_size_in_mb: 15
incremental_backups: false
snapshot_before_compaction: false
auto_snapshot: true
tombstone_warn_threshold: 1000
tombstone_failure_threshold: 100000
column_index_size_in_kb: 64
batch_size_warn_threshold_in_kb: 5
batch_size_fail_threshold_in_kb: 50
compaction_throughput_mb_per_sec: 16
compaction_large_partition_warning_threshold_mb: 100
sstable_preemptive_open_interval_in_mb: 50
read_request_timeout_in_ms: 50000
range_request_timeout_in_ms: 100000
write_request_timeout_in_ms: 100000
counter_write_request_timeout_in_ms: 100000
cas_contention_timeout_in_ms: 10000
truncate_request_timeout_in_ms: 600000
request_timeout_in_ms: 900000
cross_node_timeout: false
endpoint_snitch: SimpleSnitch
dynamic_snitch_update_interval_in_ms: 100
dynamic_snitch_reset_interval_in_ms: 600000
dynamic_snitch_badness_threshold: 0.1

Page 31

request_scheduler: org.apache.cassandra.scheduler.NoScheduler
server_encryption_options:

internode_encryption: none

keystore: conf/.keystore

keystore_password: cassandra

truststore: conf/.truststore

truststore_password: cassandra
client_encryption_options:

enabled: false

optional: false

keystore: conf/.keystore

keystore_password: cassandra
internode_compression: all
inter_dc_tcp_nodelay: false
tracetype_query_ttl: 86400
tracetype_repair_ttl: 604800
gc_warn_threshold_in_ms: 1000
enable_user_defined_functions: false
enable_scripted_user_defined_functions: false
windows_timer_interval: 1
transparent_data_encryption_options:

enabled: false

chunk_length_kb: 64

cipher: AES/CBC/PKCS5Padding

key_alias: testing:1

key_provider:

- class_name: org.apache.cassandra.security.JKSKeyProvider
parameters:

- keystore: conf/.keystore
keystore_password: cassandra
store_type: JCEKS
key_password: cassandra

Cassandra Schema

create keyspace ycsb WITH REPLICATION = {'class' : 'SimpleStrategy', 'replication_factor": 1 };"

create table ycsb.usertable (y_id varchar primary key, fieldO varchar, field1 varchar, field2 varchar,
field3 varchar, field4 varchar, field5 varchar, field6 varchar, field7 varchar, field8 varchar, field9

varchar, field10 varchar);"

Page 32

