

Issued Date	7/21/2022	Transmit #	
Issued By	dschoeck	Issued Rev	

TYPICAL MOTOR PERFORMANCE DATA

Model: 9003TCAL11F-C

HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
900	671	2	3570	5812USS	4000	60	3	113
Enclosure	IP	Ins. Class	S.F.	Duty	NEMA Nom. Eff.	NEMA Design	kVA Code	Ambient (°C)
TEAAC	44	F	1.15	CONT	94.6	-	Н	40 C

Load	HP	kW	Amperes	Efficiency (%)	Power Factor (%)
Full Load	900.00	671.1	113	94.6	90.5
¾ Load	675.00	503.3	86	94.1	88.8
½ Load	450.00	335.6	62	92.7	83.6
1/4 Load	225.00	167.8	41	88.0	66.5
No Load			27.6		9.3
Locked Rotor			833		20.8

Torque					
Full Load	Locked Rotor	Pull Up	Break Down	Inertia	
(lb-ft)	(% FLT)	(% FLT)	(% FLT)	(lb-ft²)	
1323	135	125	235	177.01	

Safe Stall Time(s)		Sound	Bearin	une*	Approx. Motor Weight	
Cold	Hot	Pressure	Bearings*			
oolu	1100	dB(A) @ 1M	DE	NDE	(lbs)	
6	1	-	6315C3	6315C3 INS	0	

*Bearings are the only recommended spare part(s).

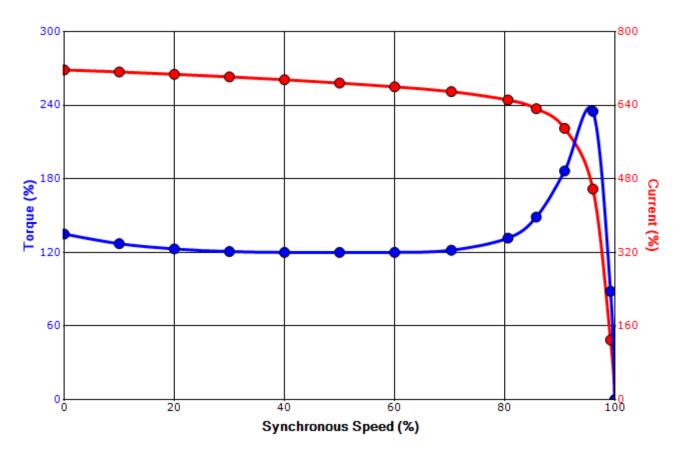
Motor Options: Product Family:TEAAC Mounting:Footed,Shaft:USS Shaft

Customer	
Customer PO	
Sales Order	
Project #	

Tag:

All characteristics are average expected values.

TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A.							
Engineering	bmammen	Doc. Written By	D. Suarez	Doc.# / Rev	MPCF-1119 / 0		
Engr. Date	7/28/2014	Doc. Approved By	M. Campbell	Doc. Issued	6/8/2011		


Issued Date	7/21/2022	Transmit #	
Issued By	dschoeck	Issued Rev	

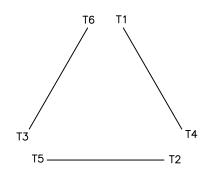
SPEED TORQUE/CURRENT CURVE

Model: 9003TCAL11F-C

HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
900	671	2	3570	5812USS	4000	60	3	113
Enclosure	IP	Ins. Class	S.F.	Duty	NEMA Nom. Eff.	NEMA Design	kVA Code	Ambient (°C)
TEAAC	44	F	1.15	CONT	94.6	-	Н	40 C
Laskad Datas	Rotor wk ²				Torque			
Locked Rotor Amps	Inertia	Full Load	Locked Rotor		Pull Up		Break	Down
Amps	(lb-ft²)	(lb-ft)	(%	b)	(%)		(%	6)
833	177.01	1323	13	135			23	35

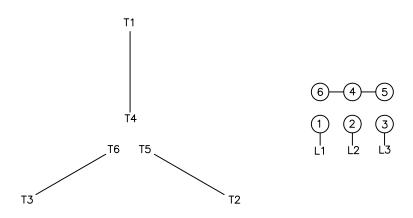
Design Values

Customer	wk² Load Inertia (lb-ft²)	-
Customer PO	Load Type	-
Sales Order	Voltage (%)	100
Project #	Accel. Time	_


Tag:

All characteristics are average expected values.

TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A.							
Engineering	bmammen	Doc. Written By	D. Suarez	Doc.# / Rev	MPCF-1121 / 0		
Engr. Date	7/28/2014	Doc. Approved By	M. Campbell	Doc. Issued	6/8/2011		


Motor Connection Diagrams 6 Leads

Across the Line Starting / Run - Delta:

Alternate Starting Connection - Wye:

Switch L1 and L2 to reverse rotation

Issued Date:	7/21/2022	Transmit #:	
Issued By:	dschoeck	Issued Rev:	

SPARE PARTS LIST*

Model: 9003TCAL11F-C

HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
900	671	2	3570	5812USS	4000	60	3	113
Enclosure	IP	Ins. Class	S.F.	Duty	NEMA Nom. Eff.	NEMA Design	kVA Code	Ambient (°C)
TEAAC	44	F	1.15	CONT	94.6	-	Н	40 C

 Bearings DE
 6315C3 / 75BC03J3OX

 Bearings NDE
 6315C3 INS / 75BC03J3OX

*Bearings are the only recommended spare part(s).

Other than the grease used for regreasable bearings and the oil used for oil-lubricated bearings, Toshiba advises that there are no "use" parts. The only insurance spares that Toshiba suggests for these squirrel-cage induction motors are industry-standard and commercially available off-the-shelf bearings as noted above.

Motor components such as terminal boxes, fan covers and other machined parts are available on special request. In these cases, please advise our order entry department of the model and serial numbers found on the motor nameplate and a description of the needed components. With this information they will be able to furnish the current part number, price and availability.

Note: Our internal part numbers are subject to change without notice and are not published.

Customer	
Customer PO	
Sales Order	
Project #	

Tag:

All characteristics are average expected values.

TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A.										
Engineering	bmammen	Doc. Written By	D. Suarez	Doc.# / Rev	MPCF-1125 / 0					
Engr. Date	7/28/2014	Doc. Approved By	M. Campbell	Doc. Issued	6/8/2011					