

TOSHIBA INTERNATIONAL CORPORATION

TOTALLY—ENCLOSED FAN—COOLED HORIZONTAL FOOT—MOUNTED 3 PHASE INDUCTION MOTOR F1 ASSEMBLY

VISIT OUR WEBSITE AT: www.toshiba.com/ind

Issued Date	9/24/2019	Transmit #	
Issued By	dschoeck	Issued Rev	

TYPICAL MOTOR PERFORMANCE DATA

Model: B1254FLF4OSHD01

HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
125	90	4	1785	444T	575	60	3	116
Enclosure	IP	Ins. Class	S.F.	Duty	NEMA Nom. Eff.	NEMA Design	kVA Code	Ambient (°C)
TEFC	56	F	1.15	CONT	95.8	В	G	40 C

Load	HP	kW	Amperes	Efficiency (%)	Power Factor (%)
Full Load	125	93.2	116.3	95.7	84.1
¾ Load	93.75	69.9	92.0	95.7	81.1
½ Load	62.50	46.6	69.6	95.0	73.3
¼ Load	31.25	23.3	51.9	87.3	51.6
No Load			36.0		4.6
Locked Rotor			726		33.9

Torque						
Full Load	Full Load Locked Rotor Pull Up Break Down					
(lb-ft)	(% FLT)	(% FLT)	(% FLT)	(lb-ft²)		
368	215	145	255	42.96		

Safe Stall	Time(s)	Sound	Bearin	une*	Approx. Motor Weight	
Cold	Hot	Pressure dB(A) @ 1M	Bearings* DE NDE		(lbs)	
21.8	5.7	-	NU318C3	6318C3	2048	

*Bearings are the only recommended spare part(s).

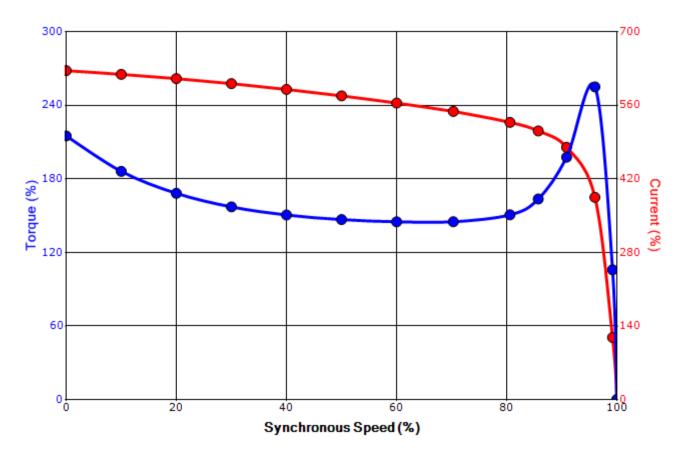
Motor Options: Product Family:EQP Global 840 Mounting:Footed,Shaft:T Shaft

Customer	
Customer PO	
Sales Order	
Project #	

Tag:

All characteristics are average expected values.

TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A.										
Engineering	amills	Doc. Written By	D. Suarez	Doc.# / Rev	MPCF-1119 / 1					
Engr. Date	2/21/2012	Doc. Approved By	M. Campbell	Doc. Issued	9/20/2019					

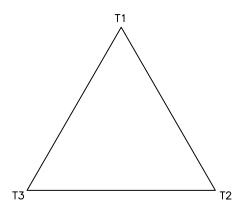

Issued Date	9/24/2019	Transmit #	
Issued By	dschoeck	Issued Rev	

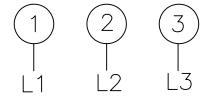
SPEED TORQUE/CURRENT CURVE

Model: B1254FLF4OSHD01

HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps		
125	90	4	1785	444T	575	60	3	116		
Enclosure	IP	Ins. Class	S.F.	Duty	NEMA Nom. Eff.	NEMA Design	kVA Code	Ambient (°C)		
TEFC	56	F	1.15	CONT	95.8	В	G	40 C		
Leeked Deten	Rotor wk ²				Torque					
Locked Rotor Amps	Inertia	Full Load	Locked	Locked Rotor)	Break	Down		
Allips	(Ib-ft²) (Ib-ft) (%)		(%)		(%	%)				
726	42.96	368	215		145		25	55		

Design Values


Customer	wk² Load Inertia (b-ft²)
Customer PO	Load	Туре -
Sales Order	Voltag	e (%) 100
Project #	Accel.	Time -


Tag:

All characteristics are average expected values.

TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A.								
Engineering	amills	Doc. Written By	D. Suarez	Doc.# / Rev	MPCF-1121/1			
Engr. Date	2/21/2012	Doc. Approved By	M. Campbell	Doc. Issued	9/20/2019			

Motor Connection Diagram 3 Leads - Delta Connection

Switch L1 and L2 to reverse rotation

Each lead may consist of more than one cable. If multiple cables represent a single lead, each one of them will be labeled with the appropriate lead number.

By: R. Murillo Date: 4/9/08 Checked: MDC Date: 5/17/11 Revision 0