

Pole

4

Ins. Class

F

kW

1.1

0.8

0.6

0.3

Issued By dschoeck Issued Rev TYPICAL MOTOR PERFORMANCE DATA e FL RPM Frame Voltage Hz Phase 1760 145TC 230/460 60 3 lass S.F. Duty NEMA Nom. Eff. Design kVA Code 1.15 CONT 86.5 B 0 // Amperes Efficiency (%) Power Fact 1 2.3 86.9 69.4 3 2.0 85.5 61.7	RFORMANCE DATA rame Voltage Hz Phase FL Amps 45TC 230/460 60 3 4.6/2.3 Duty NEMA NEMA NEMA Mom. Eff. 0ont 86.5 B 40 C
FL RPM Frame Voltage Hz Phase 1760 145TC 230/460 60 3 ass S.F. Duty NEMA Nom. Eff. NEMA Design kVA Code 1.15 CONT 86.5 B 1 Amperes Efficiency (%) Power Fact 2.3 86.9 69.4	rameVoltageHzPhaseFL Amps45TC230/4606034.6/2.3DutyNEMANEMANEMAAmbientNom. Eff.DesignkVA CodeAmbient0NT86.5B40 CEfficiency (%)Power Factor (%)
1760 145TC 230/460 60 3 ass S.F. Duty NEMA Nom. Eff. NEMA Design kVA Code 1.15 CONT 86.5 B Image: constraint of the second seco	45TC 230/460 60 3 4.6/2.3 Duty NEMA Nom. Eff. NEMA Design kVA Code Ambient (°C) CONT 86.5 B 40 C Efficiency (%) Power Factor (%)
Amperes Efficiency (%) Power Fact 2.3 86.9 69.4	NEMA Nom. Eff. NEMA Design kVA Code Ambient (°C) CONT 86.5 B 40 C Efficiency (%) Power Factor (%)
Ass S.F. Duty Nom. Eff. Design kVA Code 1.15 CONT 86.5 B Image: Second	Duty Nom. Eff. Design kVA Code (°C) ONT 86.5 B 40 C Efficiency (%)
Amperes Efficiency (%) Power Fact	Efficiency (%) Power Factor (%)
2.3 86.9 69.4	
	86.9 69.4
2.0 85.5 61.7	
1.6 82.6 53.2	82.6 53.2
1.1 77.6 41.2	
<u>1.5</u> 7.3 19.6 54.0	
	54.0

Safe Stall	Time(s)	Sound	Bearin	as*	Approx. Motor Weight
Cold	Hot	Pressure dB(A) @ 1M	DE	NDE	(lbs)
31	26	-	6305ZZC3	6305ZZC3	74

*Bearings are the only recommended spare part(s).

Full Load

(lb-ft) 4.48

Customer

Motor Options: Product Family:EQP Global Explosion Proof Mounting:C-Face Footed,Shaft:T Shaft

Customer PO Sales Order Project # Tag:

All characteristics are average expected values. TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A. Engineering bmammen Doc. Written By D. Suarez Doc.# / Rev MPCF-1119/0 6/17/2025 Engr. Date Doc. Approved By M. Campbell Doc. Issued 6/8/2011

ΗP

1.50

Enclosure

TEFC

Load

Full Load

3/4 Load

1⁄₂ Load

1/4 Load No Load Locked Rotor

Model: Y154XPEA42A-P

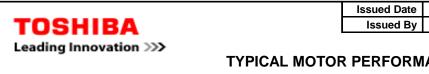
kW

1.1

IP

56

HP


1.50

1.13

0.75

0.38

TYPIC

				Issued Date	6/20/202	25	Transmit #			
TOSH				Issued Date	dschoed	-	Issued Rev			
	ovation >>>	TYPI								
Model:	Y154XPEA42A	-P								
HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps		
1.50	1.1	4	1450	145TC	190/380	50	3	5.0/2.5		
Enclosure	IP	Ins. Class	S.F.	Duty	NEMA Nom. Eff.	NEMA Design	kVA Code	Ambient (°C)		
TEFC	56	F	1.0	CONT	84.5	-		40 C		
oad	НР	kW	Amp	eres	Efficiency	(%)	Power Fa	actor (%)		
Full Load	1.50	1.1	-	2.5 85.4		78				
4 Load	1.13	0.8	2	.0	85.5		71.8			
2 Load	0.75	0.6	1	.7	83.0		59.4			
4 Load	0.38	0.3	0.3 1.2 75.7					44.5		
lo Load	_	_		.4			7.			
ocked Rotor			17	7.4			55	0.2		
(lb- 5.4		(% F 23	-		FLT) 65	(%	6 FLT) 295	(lb-ft²) 0.13		
Safe Stall	Time(s)	ime(s) Sound Booringe*				Approx. Mo	tor Weight			
Cold	Hot	Pressure dB(A) @ 1M	D	Bearings* DE NDE			(lbs)			
37	29	-	6305ZZC3 6305ZZC3			74				
Bearings are the only i		nart(s)								

Customer	
Customer PO	
Sales Order	
Project #	
Tag:	

All characteristics are av	All characteristics are average expected values.									
	TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A.									
Engineering	bmammen	Doc. Written By	D. Suarez	Doc.#/Rev	MPCF-1119 / 0					
Engr. Date	6/17/2025	Doc. Approved By	M. Campbell	Doc. Issued	6/8/2011					

HP

1.50

Enclosure

Customer

Project #

Tag:

		Issued Date	6/20/202	25	Transmit #	
		Issued By	dschoed	ck	Issued Rev	
SI		QUE/CURREN	IT CURVE			
	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
	1760	145TC	230/460	60	3	4.6/2.3
	S.F.	Duty	NEMA Nom. Eff.	NEMA Design	kVA Code	Ambient (°C)
	1.15	CONT	86.5	В		40 C
			Torque			
	Locke	d Rotor	Pull Up	0	Break	Down
	('	%)	(%)		(%	6)
	3	30	245		37	'5
	De	sign Valu	es			50
•						60
						00

Current (%

190

100

-

-

100

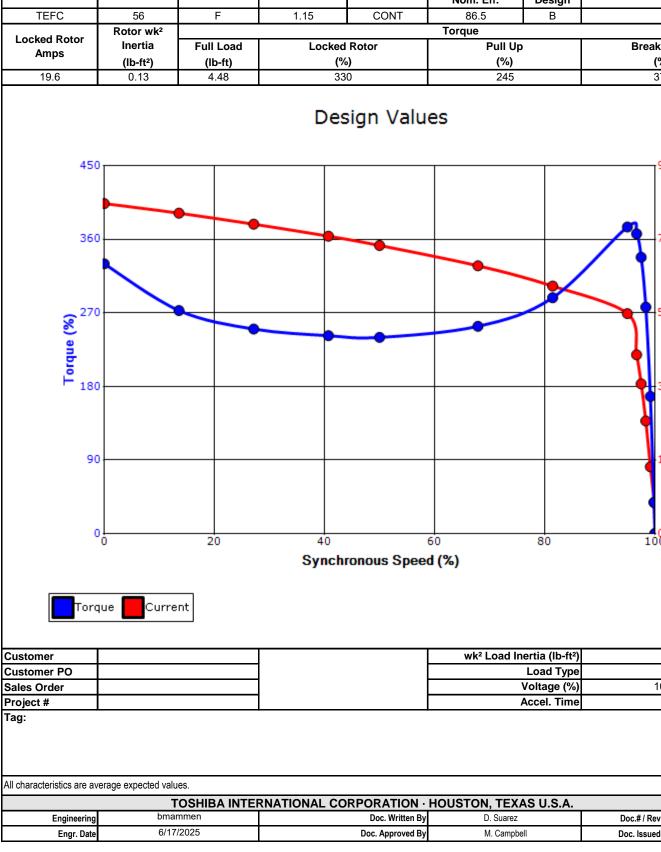
_

MPCF-1121 / 0

6/8/2011

Model: Y154XPEA42A-P

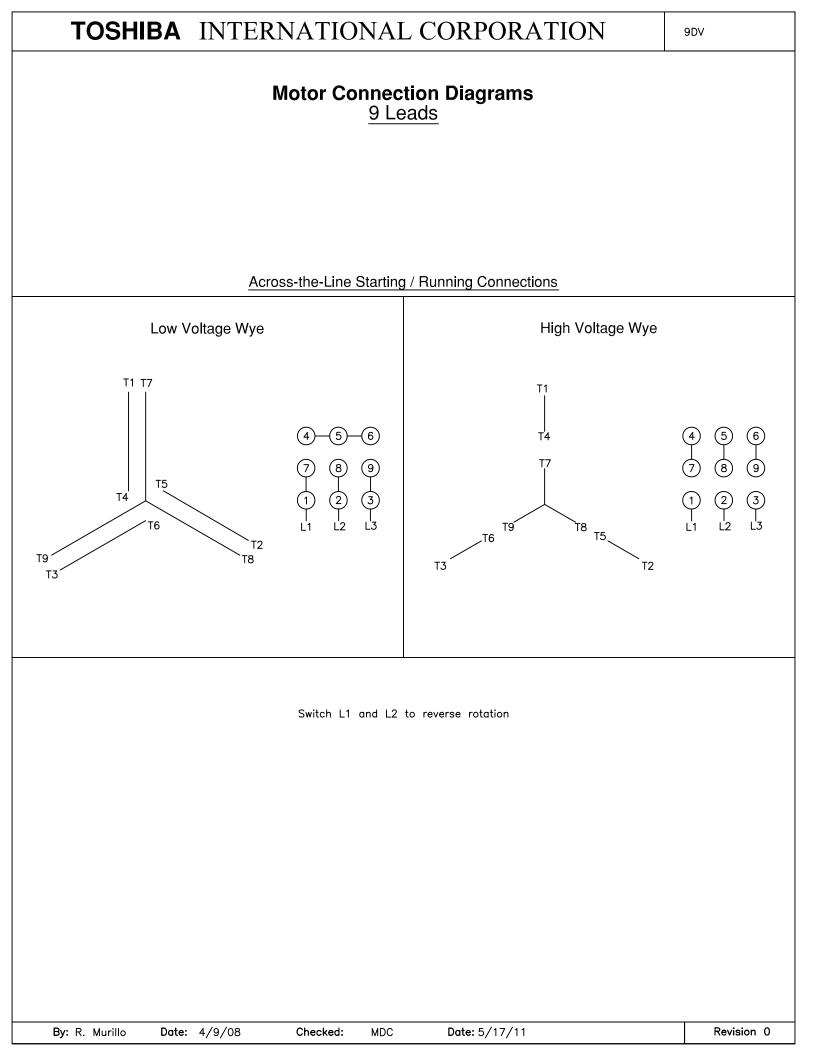
kW


1.1

IP

Pole

4


Ins. Class

1.50 1.1 4 1450 145TC 190/380 50 3 5.0/2 Enclosure IP Ins. Class S.F. Duty NEMA Nom. Eff. NEMA Design KVA Code (°C) Ambie (°C)	Leading Innovation >>> Model: Y154XPEA42A-P HP KW 1.50 1.1 Enclosure IP TEFC 56 ocked Rotor Amps (Ib-ft ²) 17.4 0.13 350 280 280 210 140	Pole 4 Ins. Class F Full Load (lb-ft)	FL RPM 1450 S.F. 1.0 Locked (% 23	Frame 145TC Duty CONT Rotor 0	T CURVE Voltage 190/380 NEMA Nom. Eff. 84.5 Torque Pull U (%) 165	Hz 50 NEMA Design -	Phase 3 kVA Code Break (% 23	%) 95 300 540	
SPEED TORQUE/CURRENT CURVE Media: YISIMPEAU2AP Image: Marking the second seco	Model: Y154XPEA42A-P HP KW 1.50 1.1 Enclosure IP TEFC 56 ocked Rotor Amps (Ib-ft ²) 17.4 0.13 350 280 280 210 140	Pole 4 Ins. Class F Full Load (lb-ft)	FL RPM 1450 S.F. 1.0 Locked (% 23	Frame 145TC Duty CONT Rotor 0	Voltage 190/380 NEMA Nom. Eff. 84.5 Torque Pull U (%) 165	50 NEMA Design -	3 kVA Code Break (% 29	5.0/2. Ambie (°C) 40 C 5000 500 540 540	
Model: Y15XPEAD2APE	HP kW 1.50 1.1 Enclosure IP TEFC 56 ocked Rotor Rotor wk² Amps (Ib-ft²) 17.4 0.13	Pole 4 Ins. Class F Full Load (lb-ft)	FL RPM 1450 S.F. 1.0 Locked (% 23	Frame 145TC Duty CONT Rotor 0	Voltage 190/380 NEMA Nom. Eff. 84.5 Torque Pull U (%) 165	50 NEMA Design -	3 kVA Code Break (% 29	5.0/2. Ambie (°C) 40 C 5000 500 540 540	
HP Fole FLAPM Frame Voltage Hz Phase FLAM 1150 1.1 4 1460 1457C 190380 50 3 5.02 Enclosure IP Ins. Class S.F. Dury NEMA NEMA NEMA NCACode (CC) TEFC 56 F 1.0 CONT 84.5 - 40C Locked Rotor Rotor Well Full Load Locked Rotor Pull Up Break Down 17.4 0.13 5.44 230 165 285	HP kW 1.50 1.1 Enclosure IP TEFC 56 ocked Rotor Rotor wk² Amps (Ib-ft²) 17.4 0.13	Pole 4 Ins. Class F Full Load (lb-ft)	1450 S.F. 1.0 Locked (% 23	145TC Duty CONT Rotor 5) 0	190/380 NEMA Nom. Eff. 84.5 Torque Pull U (%) 165	50 NEMA Design -	3 kVA Code Break (% 29	5.0/2. Ambie (°C) 40 C 5000 500 540 540	
150 1.1 4 1450 1457C 190380 50 3 5.02 Enclosure IP Ins. Class S.F. Dury NEMA	1.50 1.1 Enclosure IP TEFC 56 ocked Rotor Amps Rotor wk² Inertia (Ib-ft²) 17.4 0.13	4 Ins. Class F Full Load (lb-ft)	1450 S.F. 1.0 Locked (% 23	145TC Duty CONT Rotor 5) 0	190/380 NEMA Nom. Eff. 84.5 Torque Pull U (%) 165	50 NEMA Design -	3 kVA Code Break (% 29	5.0/2. Ambie (°C) 40 C 5000 500 540 540	
150 1.1 4 1450 1457C 190380 50 3 5.02 Enclosure IP Ins. Class S.F. Dury NEMA	1.50 1.1 Enclosure IP TEFC 56 ocked Rotor Amps Rotor wk² Inertia (Ib-ft²) 17.4 0.13	4 Ins. Class F Full Load (lb-ft)	1450 S.F. 1.0 Locked (% 23	145TC Duty CONT Rotor 5) 0	190/380 NEMA Nom. Eff. 84.5 Torque Pull U (%) 165	50 NEMA Design -	3 kVA Code Break (% 29	5.0/2. Ambie (°C) 40 C 5000 500 540 540	
Enclosure IP Ins. Class S.F. Duly Nom. Eff. Design Nom. Eff. Design KVA Code Ambia KVA TEFC 56 F 1.0 CONT 64.5 - 400 Locked Rotor Inertia Inertia Full Load Locked Rotor 64.5 - 400 Amps Inertia Inertia Full Load Locked Rotor 64.5 - 400 17.4 0.13 5.44 230 165 295 295 Design Values Open classical colspan="2">Open classical colspan="2">Nome classical colspan="2">Open classical colspan="2"">Open classical colspan="2"">Open classical co	Enclosure IP TEFC 56 ocked Rotor Amps (Ib-ft ²) 17.4 0.13 350 280 280 210 140	Ins. Class F Full Load (lb-ft)	S.F. 1.0 Locked (% 23	Duty CONT Rotor 0	NEMA Nom. Eff. 84.5 Torque Pull U (%) 165	NEMA Design -	kVA Code Break (% 25	Ambie (°C) 40 C 5000 95	
Enclosure IP Ins. Class S.F. July Nom. Eff. Design KVA Code (°C) TEFC 56 F 1.0 CONT 84.5 - 40.0 Locked Rotor Rotor wk* Full Load Locked Rotor Pull Up Break Down 17.4 0.13 5.44 230 165 295 Design Values One sign Values One sign Values Store w/* One sign Values Store of the sign	TEFC 56 ocked Rotor Amps (Ib-ft ²) 17.4 0.13 350 280 280 280 140	F Full Load (lb-ft)	1.0 Locked (% 23	CONT Rotor a) 0	Nom. Eff. 84.5 Torque Pull U (%) 165	Design -	Break (%) 21	(°C) 40 C 500wn %) 95 800 540	
TEC 56 F 1.0 CONT 84.5 - 40.0 Locked Rotor Amps Rotor with (b+tr) Full Load (b+tr) Locked Rotor (b) Torque Dull Up (b) Break Down (b) 17.4 0.13 5.44 230 165 295 Design Values Subject (b) Out (b) 0.13 5.44 230 165 295 Design Values Out (b) 0.13 5.44 230 165 295 Joint (c) 0.13 5.44 230 165 295 Joint (c) 0.13 5.44 230 165 295 Joint (c) Subject (c) Joint (c) Subject (c) Joint (c) Subject (c) Joint (c) Joint (c) Joint (c) Joint (c) Joint (c) <td (c)<="" <="" colspa="2" joint="" td=""><td>Rotor wk² Amps 17.4 0.13</td><td>Full Load (lb-ft)</td><td>Locked (% 23</td><td>Rotor 6) 0</td><td>Torque Pull U (%) 165</td><td>-</td><td>(°) 29</td><td>40 C Down %) 95 300 540</td></td>	<td>Rotor wk² Amps 17.4 0.13</td> <td>Full Load (lb-ft)</td> <td>Locked (% 23</td> <td>Rotor 6) 0</td> <td>Torque Pull U (%) 165</td> <td>-</td> <td>(°) 29</td> <td>40 C Down %) 95 300 540</td>	Rotor wk² Amps 17.4 0.13	Full Load (lb-ft)	Locked (% 23	Rotor 6) 0	Torque Pull U (%) 165	-	(°) 29	40 C Down %) 95 300 540
Locked Rotor Amps Inertia (lb-ft) Full Load (lb-ft) Load kotor (%) Pull Up (%) Break Down (%) 17.4 0.13 5.44 230 165 235 Design Values Output of the full cold (b-ft) 0.13 5.44 230 165 235 Design Values Output of the full cold (b-ft) 0.13 0.13 0.14 0.13 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Jacked Rotor Inertia Amps (lb-ft²) 17.4 0.13	(lb-ft)	(% 23	6) 0	Pull U (%) 165	p	(°) 29	%) 95 300 540	
Amps Imena Pull Gad Locked Kolor 17.4 0.13 5.44 230 165 295 Design Values Openation Openation Openation Openation Openation 17.4 0.13 5.44 230 165 295 Design Values Openation Openation Openation Openation Openation 17.4 0.13 5.44 230 165 295 Design Values 0 0 0 0 0 0 0 Openation 0 0 0 0 0 0 0 Substrained in the state of the state	Amps (lb-ft ²) 17.4 0.13 350 280 280 280 280 140	(lb-ft)	(% 23	6) 0	(%) 165	p	(°) 29	%) 95 300 540	
17.4 0.13 5.44 230 165 235 Design Values 0	(Ib-ft ²) 17.4 0.13		23	0	165		20	95 300 540	
Design Values	350 280 210 210 140	5.44						300 540	
350 0000 000	280 (%) anbuo 140		Des	sign Value	es			540	
ustomer Current Ustomer PO Ales Order Orject # Ovoltage (%) 100	0 <mark>.</mark>	20				80		160	
wk² Load Inertia (lb-ft²) - istomer PO Load Type - istomer PO Voltage (%) 100 oject # Accel. Time -			oynem	cilous opecu	(70)				
stomer wk² Load Inertia (lb-ft²) - stomer PO Load Type - les Order Voltage (%) 100 oject # Accel. Time -		_							
stomer PO Load Type - les Order Voltage (%) 100 oject # Accel. Time -	Torque Curren	nt							
stomer PO Load Type - les Order Voltage (%) 100 oject # Accel. Time -									
stomer PO Load Type - les Order Voltage (%) 100 oject # Accel. Time -				-					
Voltage (%) 100 oject # Accel. Time -				F	wk ² Load I				
oject # Accel. Time -				F					
				F					
						Accel. Time		-	

TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A.							
Engineering	bmammen	Doc. Written By	D. Suarez	Doc.#/Rev	MPCF-1121 / 0		
Engr. Date	6/17/2025	Doc. Approved By	M. Campbell	Doc. Issued	6/8/2011		

Issued Date: Issued Date: Issued By: Leading Innovation >>> SPARE PARTS LIST*

Model: Y154XPEA42A-P

HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
1.50	1.1	4	1760	145TC	230/460	60	3	4.6/2.3
Enclosure	IP	Ins. Class	S.F.	Duty	NEMA Nom. Eff.	NEMA Design	kVA Code	Ambient (°C)
TEFC	56	F	1.15	CONT	86.5	В		40 C
Bearings DE	6305ZZC3 / 2	5BC03JPP3OA						
Bearings NDE	6305ZZC3 / 2	5BC03JPP3OA						

6/20/2025

dschoeck

Transmit #:

Issued Rev:

*Bearings are the only recommended spare part(s).

Other than the grease used for regreasable bearings and the oil used for oil-lubricated bearings, Toshiba advises that there are no "use" parts. The only insurance spares that Toshiba suggests for these squirrel-cage induction motors are industry-standard and commercially available off-the-shelf bearings as noted above.

Motor components such as terminal boxes, fan covers and other machined parts are available on special request. In these cases, please advise our order entry department of the model and serial numbers found on the motor nameplate and a description of the needed components. With this information they will be able to furnish the current part number, price and availability.

Note: Our internal part numbers are subject to change without notice and are not published.

Customer									
Customer PO									
Sales Order									
Project #									
Tag:									
All characteristics are average expected values.									
TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A.									
Engineering	bmammen	Doc. Written By	D. Suarez	Doc.#/Rev	MPCF-1125 / 0				
Engr. Date	6/17/2025	Doc. Approved By	M. Campbell	Doc. Issued	6/8/2011				